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Abstract. Current trends suggest future software systems will comprise collections of 
components that combine and recombine dynamically in reaction to changing conditions. 
Service-discovery protocols, which enable software components to locate available software 
services and to adapt to changing system topology, provide one foundation for such dynamic 
behavior. Emerging discovery protocols specify alternative architectures and behaviors, which 
motivate a rigorous investigation of the properties underlying their designs. Here, we assess the 
ability of selected designs for service-discovery protocols to maintain consistency in a distributed 
system during catastrophic communication failure. We use an architectural-description language, 
called Rapide, to model two different architectures (two-party and three-party) and two different 
consistency-maintenance mechanisms (polling and notification). We use our models to 
investigate performance differences among combinations of architecture and consistency-
maintenance mechanism as interface-failure rate increases. We measure system performance 
along three dimensions: (1) update responsiveness (How much latency is required to propagate 
changes?), (2) update effectiveness (What is the probability that a node receives a change?), and 
(3) update efficiency (How many messages must be sent to propagate a change throughout the 
topology?). We use Rapide to understand how failure-recovery strategies contribute to 
differences in performance. We also recommend improvements to architectural-description 
languages. 
 
Keywords: service-discovery protocols, software performance, software architecture, 
architectural-description languages 
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1. Introduction 
Growing deployment of wireless communications, implying greater user mobility, coupled with 
proliferation of personal digital assistants and other information appliances, foretell a future 
where software components can never be quite sure about the network connectivity available, 
about the other software services and components nearby, or about the state of the network 
neighborhood a few minutes in the future. In extreme situations, as found for example in military 
applications [1], software components composing a distributed system may find that cooperating 
components disappear due to physical or cyber attacks or due to jamming of communication 
channels or movement of nodes beyond communications range. Such environments demand new 
analysis approaches and tools to design and test software. 

Our work considers how one might rigorously assess the robustness of distributed software 
systems in response to faults, such as process, node, and link failures. More particularly we seek 
techniques to test and measure the behavior and resilience of dynamic distributed systems, and to 
evaluate alternative approaches to design such systems. In this paper, we compare and contrast 
models of alternative service-discovery architectures commonly found in publicly available, 
natural-language specifications. We use an architectural-description language (ADL) to 
transform the specifications into executable models that precisely represent system structure and 
behavior. To provide our models with realistic behaviors, we incorporate consistency-
maintenance mechanisms adapted from two specifications: Jini™ Networking Technology [4] 
and Universal Plug-and-Play (UPnP) [3]. We combine various architectures and consistency-
maintenance mechanisms, and then measure performance and overhead while attempting to 
propagate changes during communication failures. Further, we show how the use of an 
appropriate architecture-modeling tool helps to explain causes underlying the measured 
performance. 

Our method builds on earlier work [14] where we derived benefits by creating dynamic 
models from specifications for service-discovery protocols. Dynamic models enable us to 
understand collective behavior among distributed components, and to detect ambiguities, 
inconsistencies and omissions in specifications. In this paper, we apply the same method: (1) 
construct an architectural model of each discovery protocol, (2) identify and specify relevant 
consistency conditions that each model should satisfy, (3) define appropriate metrics for 
comparing the behavior of each model, (4) construct relevant scenarios to exercise the models 
and to probe for violations of consistency conditions, and (5) compare results from executing 
similar scenarios against each model. To carry out the method, we rely on Rapide [13], an ADL 
developed at Stanford University. Rapide represents behavior in a form suitable to investigate 
distributed systems, and comes with an accompanying suite of analysis tools that can execute a 
specification and can record and visualize system behavior. 

The remainder of the paper is organized in six sections. We begin, in Section 2, by 
introducing service-discovery protocols and architectures, including a description of procedures 
to maintain consistency in replicated information. Section 2 also discusses various failures that 
can interfere with consistency maintenance. In Section 3, we outline some techniques, included 
in our models, to recover from failures. Section 4 defines an experiment, and related metrics, to 
compare the performance and overhead exhibited by selected pairings of architecture and 
consistency-maintenance mechanism while attempting to propagate changes during interface 
failures. In Section 5, we present results from the experiment, and we discuss causes underlying 
some of the results. In Section 6, we outline some future work to evaluate service-discovery 
architectures and protocols during message loss and node failure. We conclude in Section 7. 
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2. Service Discovery Protocols and Architectures 
Service-discovery protocols enable software components in a network to discover each other, 
and to determine if discovered components meet specific requirements. Further, discovery 
protocols include consistency-maintenance mechanisms, which can be used by applications to 
detect changes in component availability and status, and to maintain, within some time bounds, a 
consistent view of components in a network. Many diverse industry activities explore different 
approaches to meet such requirements, leading to a variety of proposed designs for service- 
discovery protocols [2-12]. Some industry groups approach the problem from a vertically 
integrated perspective, coupled with a narrow application focus. Other industry groups propose 
more widely applicable solutions. For example, a team of researchers and engineers at Sun 
Microsystems designed Jini Networking Technology [4], a general service-discovery mechanism 
atop JavaTM, which provides a base of portable software technology. As another example, a 
group of engineers at Microsoft and Intel conceived Universal Plug-and-Play [3] in an attempt to 
extend plug-and-play, an automatic intra-computer device-discovery and configuration protocol, 
to distributed systems. The proliferation of service discovery protocols motivates deeper analyses 
of their designs. 

To help us compare 
designs, we developed a 
general structural model, 
documented using the UML 
(Unified Modeling Language). 
Our general model provides a 
basis for comparative analysis 
of various discovery systems 
by representing the major 
architectural components with 
a consistent and neutral 

terminology (see first column in Table 1). The main components in our general model include:  
(1) service user (SU), (2) service manager (SM), and (3) service cache manager (SCM), where 
the SCM is an optional element not supported by all discovery protocols. These components 
participate in the discovery, information-propagation, and consistency-maintenance processes 
that comprise discovery protocols.  A SM maintains a database of service descriptions, (SDs), 
where each SD encodes the essential characteristics of a particular service or device (Service 
Provider, or SP). Each SD contains the identity, type, and attributes that characterize a SP. Each 
SD also provides up to two interfaces (an application-programming interface and a graphic-user 
interface) to access a service.  A SU seeks SDs maintained by SMs that satisfy specific 
requirements.  Where employed, the SCM operates as an intermediary, matching advertised SDs 
of SMs to SD requirements provided by SUs.  Table 1 shows how these general concepts map to 
specific concepts from Jini, UPnP, and the Service Location Protocol (SLP) [6]. The behaviors 
by which SUs discover and maintain consistency in desired SDs depend partly upon the service-
discovery architecture employed. 

2.1 Alternative Architectures for Service Discovery. Broadly speaking, system architecture 
comprises a set of components, and the connections among them, along with the relationships 
and interactions among the components. In our application, we represent the architecture of a 
discovery system using an architectural model, which expresses structure (as components, 
connections, and relations), interfaces (as messages received by components), behavior (as 
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actions taken in response to messages received, including generation of new messages), and 
consistency conditions (as Boolean relations among state variables maintained across different 
components). Our initial analysis of six distinct discovery systems revealed that most designs use 
one of two underlying architectures: two-party and three-party. 

2.1.1 Two-Party Architectures. A 
two-party architecture consists of two 
major components: SMs and SUs. In 
this study, we use a two-party 
architecture arranged in a simple 
topology consisting of one SM and 
five SUs, as depicted in Figure 1. To 
animate the architecture, we chose 
behaviors for discovery, information 
propagation, and consistency 
maintenance, as described in the 
specification for UPnP. Upon startup, 

each SU and SM engages in a discovery process to locate other, relevant components within the 
network neighborhood. In a lazy-discovery process, each SM periodically announces the 
existence of its SDs over the UPnP multicast group, used to send messages from a source to a 
group of receivers. Upon receiving these announcements, SUs with matching requirements use a 
HTTP/TCP (HyperText Transfer Protocol/transmission-control protocol) unicast link (for 
message exchanges between two specific parties) to request, directly from the SM, copies of the 
SDs associated with relevant SPs. The SU stores SD copies in a local cache. Alternatively, the 
SU may engage in an aggressive-discovery process, where the SU transmits SD requirements, as 
Msearch queries, on the UPnP multicast group. Any SM holding a SD with matching 
requirements may use a HTTP/UDP (user-datagram protocol) unicast link to respond (after a 
jitter delay) directly to the SU. Whenever a UPnP SM responds to an Msearch query (or 
announces itself), it does so with a train of (3 + 2d + k) messages, where d is the number of 
distinct devices and k is the number of unique service types managed by the SM. For each 
appropriate response, the SU uses a HTTP/TCP unicast link to request a copy of the relevant 
SDs, caching them locally. 

To maintain a SD in its local cache, a SU expects to receive periodic announcements from 
the relevant SM. In UPnP, the SM announces the existence of SDs at a specified interval, known 
as a Time-to-Live, or TTL. Each announcement specifies the TTL value.  If the SU does not 
receive an announcement from the SM within the TTL (or a periodic SU Msearch does not 
succeed within that time), the SU may discard the discovered SD. We selected the minimum 
TTL of 1800 s, as recommended by the UPnP specification. (See Tables 2 and 4 for a summary 
of relevant parameter values used in this paper.) 

2.1.2 Three-Party Architectures. A three-party architecture consists of SMs, SUs, and SCMs, 
where the number of SCMs represents a key variable. In this study, we model a three-party 
architecture with one SM and five SUs, as shown in Figure 2. We anticipate that under failure 
conditions, increasing the number of SCMs will increase the chance of successful rendezvous 
among components, leading to better propagation of information updates from SMs to SUs. To 
investigate this, we vary the number of SCMs in our three-party architectural model. To animate 
our three-party model, we chose behaviors described in the Jini specification. 

Fig. 1 Two-party service-discovery architecture deployed in a six-
node topology: five service users (SUs) and one service manager 
(SM).
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In Jini, the discovery process 
focuses upon discovery by SMs and 
SUs of any intermediary SCMs that 
exist in the network neighborhood. 
Elsewhere [14], we describe these 
procedures in detail; here, we simply 
summarize. Upon initiation, a Jini 
component enters aggressive 
discovery, where it transmits probes 
on the aggressive-discovery 
multicast group at a fixed interval (5 
s recommended) for a specified 
period (seven times recommended), 
or until it has discovered a sufficient 
number of SCMs. Upon cessation of 
aggressive discovery, a component 
enters lazy discovery, where it listens 
on the lazy-discovery multicast 

group for announcements sent at intervals (120 s recommended) by SCMs. Our three-party 
model implements both the aggressive and lazy forms of Jini multicast discovery.  

Once discovery occurs, a SM deposits a copy of the SD for each of its services on the 
discovered SCM. The SCM caches this deposited state, but only for a specified length of time, or 
TTL. To maintain a SD on the SCM beyond the TTL, a SM must refresh the SD. In this way, if 
the SM fails, then the SCM can purge any SDs deposited by the SM. To make behavior as 
consistent as possible across our models for both the two-party and three-party architectures, we 
selected 1800 s as TTL for a SD to be cached by a SCM. Using these techniques, SUs and SPs 
rendezvous through SDs registered by SMs with particular SCMs, where the SCMs are found 
through a discovery process. The SCMs match SDs provided by SMs to SU requirements, and 
forward matches to SUs, which then access the appropriate SPs. 

  2.2 Consistency Maintenance in Service Discovery Architectures. After initial discovery 
and information propagation (through SDs), service-discovery protocols provide consistency-
maintenance mechanisms that applications can use to ensure that changes to critical information 
propagate throughout the system. Critical information may concern service availability and 
capacity, or updates to descriptive information regarding service capabilities, which may be 
necessary for a SU to effectively use a discovered service. In our study, we consider two basic 
consistency-maintenance mechanisms: polling and notification, along with accompanying 
mechanisms to propagate new information. 

2.2.1 Polling. In polling, a SU periodically sends queries to obtain up-to-date information 
about a SD that was previously discovered, retrieved, and cached locally. In a two-party 
architecture, the SU issues the query directly to the SM from which the SD was obtained. In this 
study, we use the UPnP HTTP Get request mechanism to poll the SM to retrieve a SD associated 
with a specific URL (uniform-resource locator). In response, the SM provides a SD containing a 
list of all supported services, including their relevant attributes. 

Polling in a three-party architecture consists of two independent processes. In one process, a 
SM sends a ChangeService request to propagate an updated SD to each SCM where the SD was 
originally cached. In the second process, each SU polls relevant SCMs by periodically issuing a 
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or eight-node topology: five service users (SUs), a service manager 
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FindService request, effectively a query with a set of desired SD requirements. The SCM replies 
with a MatchFound that contains the relevant information for any matching SDs. In our study, 
we adopt a 180-second interval for polling in both architectures. 

2.2.2 Notification. In notification, immediately after an update occurs, a SM sends events that 
announce a SD has changed. To receive events about a SD of interest, a SU must first register for 
this purpose. In the two-party architecture, the SU registers directly with a SM. We model this 
procedure using the UPnP event-subscription mechanism, where the SU sends a Subscribe 
request, and the SM responds by either accepting the subscription, or denying the request. The 
subscription, if accepted, is retained for a TTL, which may be refreshed with subsequent 
Subscribe requests from the SU. In our experiment, we chose 1800 s as TTL for event 
subscriptions in both architectures. 

In a three-party architecture, a SU registers with a SCM to receive events using a procedure 
analogous to that used by a SM to propagate a SD. As with SD propagation, the SCM grants 
event registrations for a TTL, which may be refreshed. When a SD update occurs, the SM first 
issues a ChangeService request to all SCMs to which it originally propagated the SD. The SCM 
then issues a MatchFound to propagate the event to all SUs that have registered to receive events 
about the SD. 

2.3 The Nature and Import of Failures. The foregoing discussion, while oversimplified, 
highlights the complexity inherent in discovery protocols. Additional complexity arises from 
uncertainty, as nodes, processes, and links can appear and disappear without warning. Discovery 
protocols must include behavior to cope with such changes. In this section, we address the nature 
of various failures that can arise, and we consider the import of such failures on the behavior of 
discovery protocols, and on the application software that depends upon them. 

2.3.1 Classifying Failures. In our research, we focus particularly on failures that can exist 
within a hostile environment, such as encountered during military or emergency-response 
operations. We can classify such failures in two general categories: (1) communication failures 
and (2) process failures. Communication failures can arise due to enemy jamming, or other 
interference, due to congestion, due to physical severing of cables, due to improperly configured 
or sabotaged routing tables, or due to multi-path fading as a node moves across a terrain. We can 
subdivide communication failures into three classes: interface failures, message loss, and path 
failures. A communication interface in a node may fail fully (both transmit and receive) or 
partially (either transmit or receive). All outbound messages from an interface will be lost when 
the transmitter fails, while all inbound messages will be lost when the receiver fails. Message 
loss, a less severe failure, implies that individual messages may be lost, either sporadically or in 
bursts. Path loss appears as a blocked communication route between two nodes, or areas, in the 
network. A path can be blocked in one or both directions. 

Process failures can be caused by enemy bombardments or cyber attacks, by programming 
errors, or by hardware failures. We can subdivide process failures into node and thread failures. 
During a catastrophic failure, processing in a node ceases, and the node must reinitialize before 
processing resumes. Some information maintained by the node may persist across the failure, 
while other information may be lost. The nature and condition of persistent information could 
prove crucial to a node’s behavior after processing resumes. Of course, the node might never 
reappear. Thread failures, while less catastrophic, can be more troublesome than node failures. A 
node might rely on certain long-running threads to react to events from other nodes. Failure of 
selected threads can interfere with the operation of the node, as well as other nodes in a 
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distributed system. In some cases, a node can appear to be present, while being effectively 
inoperable. 

2.3.2 Failure Responses by Service Discovery Systems. In service-discovery systems, failure-
recovery responsibilities are divided among three parties: (1) lower-layer protocols, (2) discovery 
protocols, and (3) applications. Discovery protocols and applications use the services of three 
classes of lower-layer protocols: (1) unreliable unicast protocols, (2) unreliable multicast 
protocols, and (3) reliable unicast protocols. Unreliable protocols, whether unicast or multicast, 
neither recover nor signal lost messages; thus, neither source nor destination will learn of a loss. 
Further, multicast protocols exchange messages along a tree of receivers. For this reason, a 
multicast message might be received by some nodes, but not by others. A failure near a multicast 
source, prevents messages from being received by any node in the multicast tree, while a failure 
near a receiver, prevents messages from being received by only a single node in the multicast 
tree. Of course, failures at intermediate points in the multicast tree could result in messages being 
lost to subsets of receivers. Since unreliable protocols provide no guarantees, recovery must be 
provided by mechanisms at a higher-layer. 

Reliable unicast protocols include mechanisms that attempt to ensure delivery of messages 
by detecting and retransmitting lost messages. Of course, the reliability schemes may eventually 
give up if too many retransmissions are needed (which might indicate node or path failure). In 
such cases, the reliable unicast protocol will signal to a higher layer that a message could not be 
delivered. Some ambiguity does exist, however, when using reliable unicast protocols to send 
request-response message pairs, as is the case for discovery systems. After submitting a request 
through a reliable unicast protocol, a requesting process might wait for a corresponding response 
from a remote process. For example, Jini can use Remote Method Invocation (RMI) over TCP to 
invoke a method on a remote object, and to receive a response. Similarly, UPnP uses TCP to 
submit HTTP requests and receive HTTP responses. In such cases, the RMI layer or the TCP 
layer can signal a remote exception (REX). The requesting process cannot determine whether a 
REX was caused by failure to transmit the request or by failure to receive a response from the 
remote process. The responding process has more information, as it does not receive a REX 
when an inbound request fails, but does receive a REX when its outbound response fails. In 
essence, while reliable unicast protocols attempt to deliver messages in the face of various 
communication failures, ultimately the reliability mechanisms might prove insufficient, causing a 
higher-layer process to be notified of the failure. In such cases, the higher-layer process is free to 
determine an appropriate failure-recovery strategy. 
 
3. Modeling Failure Recovery Strategies in Service Discovery Architectures 
Our architectural models incorporate three classes of failure-recovery strategies: (1) recovery by 
lower-layer protocols, (2) recovery by discovery protocols, and (3) recovery by application 
software. For each class, we outline the strategies (see Table 2) included in our models. 

3.1 Recovery by Lower-Layer Protocols. Our models operate over two types of channels: 
unreliable, simulating the UDP in both multicast and unicast forms, and reliable, simulating the 
TCP. In UDP simulation, we discard messages lost due to transmission errors, and we discard 
messages lost due to path and interface failures. During path failure, messages can be discarded 
in one or both directions. During interface failure, we discard all messages sent from a node with 
a failed transmitter, and we discard all messages inbound for a node with a failed receiver. 
Neither sender nor receiver learns the fate of lost messages. 

In the TCP simulation, our model proves more complex. For messages lost to transmission 
errors, we schedule a retransmission (roughly within a round-trip time, or RTT). We increase the 
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RTT by about 25% with each successive retransmission. If successive retransmissions exceed a 
threshold (three in the current study), then we discard the message and issue a REX. For 
messages lost to interface or path failure, we model TCP connection establishment procedures by 
discarding the message and waiting for a period, uniformly distributed between an upper and 
lower bound (30-75 s in the current study), then we signal a REX. When discarding a request, we 
signal a REX to the requester, but when discarding a response, we signal a REX to both parties. 

3.2 Recovery by Discovery 
Protocols. Discovery protocols 
include built-in robustness 
measures to deal with the 
possibilities of UDP message 
loss and node failure. Discovery 
protocols specify periodic 
transmission of key messages. 
For example, Jini requires a node 
to engage in aggressive discovery 
on startup, and then to enter lazy 
discovery, where all SCMs 
periodically announce their 
presence. In a similar lazy 
discovery, UPnP requires SMs to 
periodically announce their 
presence. While not specifying 
aggressive discovery, UPnP 

permits SUs to issue Msearch queries at any time. To compensate for the different 
announcement intervals recommended for Jini and UPnP, we chose to have UPnP SUs issue 
Msearch queries every 120 s, but only after a SU purges a SD from its local cache. Once a SU 
regains its desired SD, the related Msearch queries cease. Whenever a UPnP SM announces 
itself or responds to an Msearch query, it sends n copies of each message, where n is a 
retransmission factor (two in the current study) recommended by UPnP to compensate for 
possible UDP message loss. In both Jini and UPnP, each announcement includes a TTL. 
Receiving nodes can cache the information in the announcement until the TTL expires; then the 
information must be purged from the cache. In this way, each node in the system eliminates 
residual information about failed or unreachable nodes. Our models incorporate these failure-
recovery behaviors. 

3.3 Recovery by Application Software. When discovery nodes communicate over a reliable 
channel, a REX may occur. Response to a REX is left to the application. In our models, 
depending on the situation, we implement three different strategies: (1) ignore the REX, (2) retry 
the operation for some period, and (3) discard knowledge. The retry strategy attempts to recover 
from transient failures. The discard strategy, which occurs following repeated failure of the retry 
strategy, relies upon discovery mechanisms to recover from more persistent failures. 

3.3.1 Ignore the REX. In many cases, we simply ignore a REX. In general, our models ignore 
a REX received when attempting to respond to a request. A SU can ignore a REX received in 
response to a poll, FindService or HTTP Get, because the poll recurs at an interval. The SCM 
(three-party model) or the SM (two-party model) also ignores a REX received while attempting 
to issue a notification. This behavior, which is described in both the Jini and UPnP 

Table 2.  Provides a summary of the division of recovery 
responsibilities and strategies across lower-layer protocols, discovery 
protocols, and application software, as implemented within our 
models for two- and three-party architectures. 

Three-Party 
Architecture (Jini)

Two-Party 
Architecture (UPnP)

Recovery 
Mechanism

Responsible 
Party

SU and SM: purge SCM after 
540 s of continuous
REX
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Discard 
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SM: depositing or refreshing SD
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SU: registering and refreshing
notification requests with SCM   
retry in 120 s
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Subscribe requests retry in 
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Retry after 
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specifications, depends upon reliable lower-layer protocols to provide robustness for 
notifications. Notifications do include sequence numbers that allow a receiving node to 
determine whether or not previous notifications were missed. 

3.3.2 Retry the Operation. In our models, we retry selected operations in the face of a REX. 
The UPnP specification separates the operation of discovering a resource from obtaining a 
description of the resource (Jini combines these operations). Without a description, the resource 
cannot be used. For this reason, in our two-party model, a SU must issue a HTTP Get to obtain a 
description. If no description arrives within 180 s, then our model retries the HTTP Get. If 
unsuccessful after three attempts, the SU ceases the retries, but sets a flag reminding itself to 
reissue a HTTP Get when the resource is next announced. Our three-party model, based on Jini, 
also contains a retry strategy, but associated with attempts to register or change a SD with a 
SCM. In these cases, the SM retries a ChangeService or ServiceRegistration 120 s after receiving 
a REX. Similarly, when a SU receives a REX (from either a SM or SCM) in response to a 
request to register for notification, the SU retries the registration in 120 s. These retries occur 
until some time bounds, after which the SM discards knowledge of the SCM.  

3.3.3 Discard Knowledge. Both our two-party and three-party models include the possibility 
that an application can discard knowledge of previously discovered nodes. In UPnP, after failure 
to receive announcements from the SM within a TTL, a SU discards a SM and any related SDs. 
We implement this behavior in our two-party model. In Jini, the specification states that a 
discovering entity may discard a SCM with which it cannot communicate. In our three-party 
model, a SM or SU deletes a SCM if it receives only REXs when attempting to communicate 
with the SCM over a 540-s interval. After discarding knowledge of a SM (UPnP) or SCM (Jini), 
all operations involving the node cease until it is rediscovered, through either lazy discovery (Jini 
or UPnP announcements) or aggressive discovery (UPnP Msearch queries). 
 
4. Experiment Definition and Metrics 
In this paper, we focus on using service-discovery architectures and protocols to propagate 
changes in a distributed system. Specifically, we investigate the following question: How do 
alternative service-discovery architectures, topologies, and consistency-maintenance mechanisms 
perform under deadline during interface failure? To address this question, we deploy a two-party 
and three-party architecture (recall Figures 1 and 2), each in a topology that includes one SM and 
five SUs. In the three-party case, we use two topologies, one with one SCM and another with 
two SCMs. To establish initial conditions, we exercise each topology until discovery completes, 
and the initial information (a SD) propagates to all SUs. To begin the experiment, we introduce a 
change in the SD at the SM, and we establish a deadline, D, before which the change must 
propagate to all SUs. We measure the number of messages exchanged and the latency required to 
propagate the new information, or until D, under two different consistency-maintenance 
mechanisms: polling and notification. We repeat this experiment while varying the percentage of 
interface-failure time for each node up to 75% (in increments of 5%). We provide further details 
below. 

4.1 Combining Architectures and Consistency-Maintenance Mechanisms. To compare 
change propagation in two- and three-party architectures, we use our models to combine the 
architectures, including relevant behaviors from the UPnP and Jini protocols, with different 
consistency-maintenance mechanisms. For the two-party architecture, we adopt the polling and 
notification mechanisms discussed earlier, using the UPnP protocol as a basis. In the three-party 
architectures (both one-SCM and two-SCM), we also use polling and notification mechanisms, 
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but in a form consistent with behaviors defined in the Jini specification. Table 3 depicts the six 
combinations. Each experiment runs one combination from time zero until D, while introducing 
a particular interface-failure rate at each node. Each experiment aims to restore consistency 
among the changed SD held by the SM and the cached copies of the SD held by all of the SUs. 

4.2 Tracking Consistency. To track consistency in our models, we employ property analysis 
(introduced in a previous paper [14]). We posit a single consistency condition: service attributes 
for a SD discovered by a SU should have the same values as the attributes of the SD being 
maintained by the SM that manages the SD. More formally, 

 
FOR All (SM, SU, SD) 

      SD [Attributes1] isElementOf SM managed-services 
   (SM, SD [Attributes2]) isElementOf SU discovered-services 

     implies Attributes1 = Attributes2. 
 
We incorporate this consistency condition directly into our models, and check it using Rapide 
procedural code. These checks form the basis for our measurements.  

4.3 Generating Interface Failures. 
We set aside an interval, up to time Q, 
to complete initial discovery and 
information propagation. In our 
experiments, D = 5400 s and Q = 100 
s. Then, we choose a time, randomly 
distributed on the uniform interval Q 
to D/2, to introduce a change into the 
SD on the SM. We also choose a time, 
randomly distributed on the uniform 
interval Q to [D - (D x F)], for each 
node to suffer an interface failure. 

Here, F is the interface-failure rate. When activating each interface failure, we choose with equal 
likelihood that the transmitter, receiver, or both fail. Once activated, each failure remains in 
effect for a duration of D x F, after which the failure is remedied. Table 4 summarizes most of 
the relevant parameters and values for our experiments. 

4.4 A Sample Run. Figure 3 shows partial results from a sample run for the three-party 
architecture, with two SCMs, using notification as the consistency-maintenance mechanism. In 
this run, F was 0.05, and so each failure occurred between 100 and 5130 s [D - (D x F)], and 
lasted for 270 s (D x F). Figure 3 shows the time when each interface failed, and recovered. The 
performance section of the figure lists two times for each node: loss of consistency and 
restoration of consistency, or D where inconsistency remains. The figure also lists two message 
counts for each node: messages sent to restore consistency and total messages sent. For each SM 
and SCM, the first message count includes messages sent while any SU remains inconsistent. In 
this sample run, SUs 1, 2, 4, and 5 and both SCMs became consistent quickly, within 0.00109 s, 
which represents the time necessary to propagate the change from the SM to at least one SCM, 
match the changed SD registration to all the SU notification requests registered on the SCM, and 
forward the matches. However SU 3, whose receiver failed at an inopportune time, never heard 
the notification and continued in an inconsistent state for the remainder of the run. This run 
illustrates how lack of robustness in the notification mechanism can lead to prolonged 
inconsistent states. 

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Dual SCM)
Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Single SCM)
Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration 
on SM)

UPnPTwo-Party
PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Dual SCM)
Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Single SCM)
Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration 
on SM)

UPnPTwo-Party
PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Table 3. Experiments compare these combinations of 
architecture, topology, protocol, and consistency-maintenance 
mechanism. 
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4.5 Metrics. We use the data 
collected from experiment runs to 
compute three metrics: update 
responsiveness, update effectiveness, 
and update efficiency. We define these 
below. 

4.5.1 Update Responsiveness. 
Assuming information is created at a 
particular time and must be propagated 
by a deadline, then the difference 
between the deadline and the creation 
time represents available time in which 
to propagate the information. Update 
Responsiveness, R, measures the 
proportion of the available time 
remaining after the information is 
propagated. More formally, let D be a 
deadline by which we wish to 
propagate information to each SU-
node n in a service discovery topology. 
Let tC be the creation time of the 
information that we wish to propagate, 
where tC  < D. Let tU(n) be the time that 
the information is propagated to SU n, 
where n = 1 to N, and N is the total 
number of SUs in a service discovery 
topology. Define change-propagation 
latency (L) for an SU n as: Ln = (tU(n) - 
tC)/(max(D, tU(n)) – tC). This is 
effectively the proportion of available 
time used to propagate the change to 
SU n. The numerator represents the 
time at which the SU achieved 
consistency (e.g., satisfied the 
consistency condition) after the update 
occurred. The denominator represents 
the time available to propagate the 
change. The term max(D, tU(n)) 
accounts for cases where tU(n) > D. 
Define R for a SU n as: Rn = 1 – Ln. Rn 
is the proportion of available time 
remaining after propagating a change 
to SU n. 

4.5.2 Update Effectiveness. Update Effectiveness, U, measures the probability that a change 
will propagate successfully for a given SU, i.e., tU(n) < D. More formally, assuming the 
definitions related to R hold, let X represent the number of runs during which a particular 

100 us for cache items
10 us for other items

Per-item processing 
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission 
delay

Transmission and 
processing delays

5% increments of 5400 s 
from 0 to 75%

Failure duration

Transmitter, receiver, or 
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure 
parameters

After 540 s with only REXSM or SU purges SCM
120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD
120 sMsearch query interval
1800 sAnnounce intervalUPnP-specific 

behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL
180 sPolling interval

Behavior in both 
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing 
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission 
delay

Transmission and 
processing delays

5% increments of 5400 s 
from 0 to 75%

Failure duration

Transmitter, receiver, or 
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure 
parameters

After 540 s with only REXSM or SU purges SCM
120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD
120 sMsearch query interval
1800 sAnnounce intervalUPnP-specific 

behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL
180 sPolling interval

Behavior in both 
two- and three-
party architectures

ValueParameter

Table 4. Values for the most relevant parameters used in our 
experiments. 

Rate - 5
Run number - 21

SM 1 OUT Interface       down 365, up 635

SCM 1 OUT Interface       down 2417, up 2687
SCM 2 IN & OUT Interface  down 519, up 789

SU 1  IN Interface     down 2238, up 2508
SU 2  IN Interface    down 3256, up 3526
SU 3  IN Interface   down 207,  up 477
SU 4  OUT Interface down 2876, up 3146
SU 5  IN Interface down 4478, up 4748

Performance:

SM  1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU  1 346.00000 346.00109 0 11
SU  2 346.00000 346.00109 0 11
SU  3 346.00000 5400.00000 4 11
SU  4 346.00000 346.00109 0 11
SU  5 346.00000 346.00114 0 11

Fig. 3. Console output from one sample experiment run: 
three-party architecture, two SCMs, notification used to 
maintain consistency, F = 5%, Q =100 s, and D = 5400 s. 
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topology is observed under identical conditions. Recalling that N is the total number of SUs in a 
topology, define the number of SUs observed under identical conditions as: O = X .N. Define the 
probability that tU(n) < D as: P(F) = (count(Ri,j == 0))/O, where i = 1..N and j = 1..X. Define U for 
the given conditions as: U = 1 – P(F). 

4.5.3 Update Efficiency. Given a specific service-discovery topology, examination of the 
available architectures (two-party and three-party) and consistency-maintenance mechanisms 
(polling and notification) reveals a minimum number of messages, M, that must be sent to 
propagate a change to all SUs. In our topology, M (M = 7) occurs when using notification to 
propagate information in a three-party architecture with one SCM. Update Efficiency, E, can be 
defined as the ratio of M to the actual number of messages observed. More formally, let S be the 
number of messages sent while attempting to propagate a change from a SM to SUs in a given 
run of the topology. Define average E as: Eavg = (sum(M/Sk))/X, where k = 1..X. 

 
5. Results and Discussion 
In this section, after showing results from our experiments, we consider the relative performance 
of our models. We propose reasons for performance differences, subject to further analysis and 
verification by on-going research. We also use Rapide to examine selected saw-tooth behaviors, 
and we outline some suggestions for improving ADLs (based on our experiences with Rapide). 

5.1 Results. In a series of six graphs, which have identical abscissas (interface-failure rate, 
increasing from 0% to 75% in increments of 5%) and ordinates (a metric ranging between 0 and 
1), we plot selected measurements generated from our models. Each graph compares four of the 
configurations given in Table 3 against one of our metrics: update responsiveness (median), 
update effectiveness, and update efficiency (average). We chose the median as a measure of 
update responsiveness because the measured data tend to clump in distinct concentrations. 
Computed averages proved less representative of the data. Figure 4(a) compares update 
responsiveness from our two-party model against that from our single-SCM, three-party model, 
for both polling and notification. Figure 4(b) provides a similar comparison, but substitutes the 
results from our dual-SCM, three-party model in place of results from our one-SCM, three-party 
model. Figures 4(c) and 4(d) compare update effectiveness using the same combinations. Figures 
4(e) and 4(f) use the same combinations, but compare update efficiency. 

The graphs reporting measures of responsiveness and effectiveness depict a system 
undergoing a phase-transition from peak performance (where changes propagate quickly) to non-
performance (where changes fail to propagate). Regarding efficiency, the graphs show a system 
that begins at its best, efficiency (without interfering failures) and then asymptotically 
approaches zero efficiency as the failure rate increases toward 100%. The graphs (particularly 
those showing update effectiveness) also depict several eccentricities, in the form of saw-tooth 
behaviors. Using the analysis and visualization tools provided by Rapide, we were able to 
investigate the causes underlying these eccentricities (see 5.3). Because the graphs can be 
difficult to interpret, we compute summary statistics (see Table 5) for each of our six 
combinations. Each summary statistic reflects the mean of a particular metric, when averaged 
across all interface-failure rates, for a specified configuration. To indicate the uncertainty 
associated with our measurements, we also give (see Table 6) the upper and lower bounds 
(computed using an appropriate standard error formula for each metric) associated with selected 
interface-failure rates (5%, 40%, and 75%) for each of our curves. 
 



Dabrowski & Mills NIST      WOSP 2002 Submission 1/25/2002 

 12   

 
 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80

Interface Failure Rate (%)

U
pd

at
e 

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Single-SCM
Notification

Three-Party Single-SCM
Polling

(c) Update Effectiveness of Two-Party vs. Three-Party 
(Single-SCM) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n 

U
pd

at
e 

R
es

po
ns

iv
en

es
s

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(b) Median Update Responsiveness of Two-Party vs. 
Three-Party (Dual-SCM) 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

U
pd

at
e 

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(d) Update Effectiveness of Two-Party vs. Three-Party 
(Dual-SCM) 

(e) Update Efficiency of Two-Party vs. Three-Party 
(Single-SCM) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
ge

 U
pd

at
e 

Ef
fic

ie
nc

y

Two-Party Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-PartySingle-SCM
Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
g

e 
U

p
d

at
e 

E
ff

ic
ie

n
cy

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM Notification

Three-Party Dual-SCM Polling

(f) Update Efficiency of Two-Party vs. Three-Party 
(Dual-SCM) 

Fig. 4. Graphs comparing combinations of architecture, topology, and consistency-maintenance mechanism.

(a) Median Update Responsiveness of Two-Party vs. 
Three-Party (Single-SCM) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n 

U
pd

at
e 

R
es

po
ns

iv
en

es
s

Two-Party
Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-Party Single-
SCM Polling



Dabrowski & Mills NIST      WOSP 2002 Submission 1/25/2002 

 13   

5.2 Understanding Relative Performance. Below, 
we discuss the performance results for each of our three 
metrics. The reader should recognize that engineering 
trade-offs exist among these metrics: responsiveness, 
effectiveness, and efficiency. 

5.2.1 Responsiveness. Results in the first column of 
Table 5 show that the various combinations of 
architecture and behavior exhibit similar 
responsiveness, where the mean median ranges between 
0.663 and 0.530. Table 6, which reports uncertainty in 
the results, confirms a similarity in responsiveness. 
Similarity arises because interface failures interfere 
with both polling and notification, requiring nodes to 
rely on recovery mechanisms in the underlying 

discovery protocols to restore consistency. Absence failures, notification proves more responsive 
because change notices are issued to interested parties immediately after a change occurs, while 
polling incurs some lag time. The presence of interface failures complicates the situation. First, if 
a required interface is not operating when a notification is issued, then an update will be lost. 
Second, when polls fail for an extended period (likely during high interface-failure rates), then 
polling ceases and updates can be missed. Under both (polling and notification) mechanisms, 
restoring consistency depends upon the recovery mechanisms in the discovery protocol.  

The recovery 
mechanisms, as implemented 
in our models, exhibit similar 
responsiveness: rediscovery 
of lost nodes will occur 
within 120 s after restoration 
of a failed interface. In the 
three-party case, periodic 
(120 s) announcements by 
each SCM (lazy-discovery 
procedures) ensure 
rediscovery. Similarly, in our 
two-party model, the periodic 
(120 s) Msearch queries by 
each SU (aggressive-

discovery procedures) also ensure rediscovery. In this way, restoration of a failed interface leads 
to rediscovery of lost nodes, and in the process to restoration of consistency in cached copies of 
SDs. As the interface-failure rate increases beyond 30%, the rediscovery machinery tends to 
dominate the responsiveness results (see 5.4 for further discussion of recovery mechanisms). 

5.2.2 Effectiveness. Results in the second column of Table 5 show that certain combinations 
lead to better update effectiveness, and Table 6 suggests that these differences could be 
significant. Differences in effectiveness may be partly attributed to architecture and topology. 
For example, each SD copy must propagate over either one link (two-party case) or two links 
(three-party case). For this reason, the three-party architecture (single SCM) can prove more 
vulnerable to interface failures (two links must be operational). This suggests that the two-party 
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0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530Three-Party Polling
(Single SCM)
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Table 5. Summary statistics (mean across all 
interface-failure rates) computed for each 
curve given in the graphs shown in Figures 
4(a) through 4(f). 

Table 6. Depicts upper and lower bounds of the 95% C.I., computed using 
appropriate statistical techniques, for each metric and all experiment 
combinations at selected interface-failure rates. 
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architecture will be more effective under severe interface failures, and our results support this. 
On the other hand, the three-party architecture allows replication of SCMs, which provides a 
greater number of paths through which information can propagate. This suggests (and our results 
agree) that the three-party architecture with the dual SCM should provide superior effectiveness 
over the single-SCM, three-party architecture. Our results also indicate that the dual-SCM three-
party architecture yields effectiveness close to that of the two-party architecture. We imagine that 
adding SCMs will improve the effectiveness of the three-party architecture by increasing path 
redundancy in the topology. Lacking this flexibility, the two-party architecture appears unable to 
improve its effectiveness during interface failure. 

Differences in effectiveness may also be attributed in part to consistency-maintenance 
mechanism. In general, the polling mechanism should lead to better effectiveness than the 
notification mechanism. Polling has a built-in robustness associated with periodic issuing of poll 
requests. On the contrary, in both two and three-party architectures, each notification is issued 
only once with no further action by the sender in response to a REX (recall Table 2). Our results 
support this analysis for the two-party architecture and for the three-party architecture with a 
single SCM. For example, the effectiveness of two-party notification suffers from situations 
where the notice is lost but the SM is not lost (because announcements occur only every 1800 s 
and thus an interface failure can be restored before the next announcement). In these situations, 
rediscovery does not occur and the change will not be propagated (see 5.3). 

Counter to the general trend, our results suggest that notification might be more effective 
than polling for the three-party architecture with dual SCM. We suspect a combination of factors. 
First, the dual-SCM topology has an increased number of paths through which information can 
propagate. This factor should improve the effectiveness of both the polling and notification 
mechanisms. A slight edge accrues to the notification mechanism because only the SCM-to-SU 
link needs to be functioning for a change to propagate, while in the case of polling the SU-to-
SCM link must also be operational. Here, our model might be somewhat misleading because 
notification in a real system uses TCP, which requires a path to be operational in both directions 
before a connection can be established. 

5.2.3 Efficiency. For a given combination of architecture and topology, we expect that 
notification would be more efficient than polling. We also expect that the two-party architecture 
would be more efficient than the three-party architecture, and that the single-SCM topology 
would be more efficient than the dual-SCM topology. In general, the results in Table 5 support 
these expectations, but with a few twists. The three-party, single-SCM architecture with the 
notification mechanism proves more efficient than the two-party architectures because in Jini the 
SD arrives with notification, while in UPnP notifications indicate only that a change has 
occurred, requiring a SU to exchange a request-response message pair to obtain the updated SD.  

Another twist arises because notification mechanisms need to recover from REXs associated 
with refreshing remote resources. In all architectures, when using notification, each SU must 
periodically refresh notification requests deposited on the SM (two-party case) or SCM (three-
party case). Interface failures lead to REXs during refresh attempts. A REX invokes retry 
procedures: every 120 s until 540 s of continuous REX (three-party case) or every 120 s until a 
SM is purged (two-party case). 

5.3 Investigating Saw-Tooth Phenomena. A number of the curves shown in Figures 4(a)-
(f), exhibit saw-tooth phenomena, which are most pronounced for update effectiveness, 
particularly for the two-party architecture with notification. Our uncertainty calculations suggest 
that at failure rates above 40% these spikes may be attributed to random variations, which might 
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be reduced by increasing the number of runs at each failure rate (currently 30) and the 
corresponding number of data points (currently 5 SUs x 30 runs = 150). On the other hand, 
spikes at lower failure rates appear more likely due to causal behavior in our models. For 
example, the two-party architecture with notification exhibits a significant dip at 15% interface-
failure rate. 

Using visualization and analysis tools included with Rapide, we examined the partially 
ordered sets of events (POSETs) that contain complete causal behavior of our model. The 
POSETs revealed that at the 15% interface-failure rate a large number of notifications were lost 
when either the SM transmitter was inoperable (causing notifications to all SUs to be lost) or 
when SU receivers were inoperable (causing lost notifications to individual SUs). Recovery from 
notification loss depends upon a SU discarding a SM, and then rediscovering the SM, and 
retrieving related SDs. A SU discards a SM when it fails to receive an announcement from the 
SM within the specified time. Unfortunately, in many cases, a failed interface, which led to 
notification losses, was repaired prior to the next SM announcement (announcements come every 
1800 s). In these cases, the SU did not purge the SM, and therefore there was no rediscovery. 
Without rediscovery, there was no mechanism to restore consistency. In such cases, lost 
notifications led to inconsistencies that persisted to the deadline (and beyond). 

Why does this behavior not appear with notification in the three-party architecture? The 
three-party architecture requires a SM to first propagate a change to a SCM. The SCM then 
propagates the change on to SUs that requested notification. While notification from SCM to SU 
is unprotected, on failure a SM retries change propagation to a SCM. An inoperable SCM 
transmitter leads not only to failure to propagate notifications to SUs, but also to failure to 
confirm the change propagated by the SM. Absent confirmation, the SM retries the change for up 
to 540 s, during which time the SCM transmitter might be restored. Each repeated change that 
propagates to the SCM also causes notifications to be sent to the relevant SUs. Thus for SCM 
transmitter failures, we conclude that robustness in change propagation from SM to SCM 
compensates for lack of robustness in notifications from SCM to SU. No equivalent serendipity 
occurs in the two-party architecture. These cases suggest relationships between the timing and 
scope of failures and the role of recovery mechanisms in the different architectures.   

5.4 Role of Recovery Mechanisms. Under hostile conditions, such as those in our 
experiments, recovery mechanisms play a key role in consistency maintenance. For example, a 
detailed analysis of results from our two-party architectural model show that at 30% failure rate 
and below, interface failures tend to be restored more frequently within the REX retry period 
associated with HTTP Get requests; thus, application recovery contributes substantially to update 
effectiveness. Above 30% failure rate, application recovery tends to exhaust its allotted time, 
leading a SU to discard knowledge of the SM. In such cases, update effectiveness depends 
primarily on robustness mechanisms built into the discovery protocol. These observations led us 
to design additional experiments to assess the trade-off in update effectiveness and efficiency for 
various recovery mechanisms. We will report our findings in a later paper. 

5.5 Recommendations for Improving ADLs. While the Rapide ADL provided useful 
abstractions to represent and analyze the structure and behavior of service-discovery protocols 
under failure, we recommend some improvements that apply generally to ADLs. First, this study 
reinforces our previous recommendations [14] that component states should be selectively 
exportable to allow data extraction and recording for analysis. Such an export mechanism would 
also assist in implementing techniques to evaluate consistency conditions that involve state from 
two or more components and that consider time, two important considerations when analyzing 
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component interactions. We note that some ADLs include constraint-analysis engines that 
consider time. Second, ADLs, and especially their tools, must provide representations of 
behavior that can be evaluated efficiently. For example, to bound POSET size in this study, we 
were forced to substitute procedure calls in place of Rapide constraint evaluation. Third, we 
would find it convenient if ADL tools supported the same statistical techniques available from 
commercial simulation systems. For example, ADL tools might include mechanisms to track and 
summarize statistics about selected state variables. ADLs might also include machinery to apply 
statistical tests to selected variables across experiment runs in order to automate halting 
decisions. We expect to develop additional recommendations as our work proceeds. 
 
6.  Future Work 
We envision our future work along three general directions. First, we intend to complete our 
characterization of performance for various combinations of architecture, topology, and behavior 
during failures. We will model the effects of message loss, which appear likely to differ 
significantly from those described in this study, and we will assess the ramification of node 
failure on discovery and recovery mechanisms in various architectures and topologies. Second, 
we plan to propose, model, and evaluate selected changes to improve the performance of 
discovery architectures and protocols in response to failure. Here, our goal is to increase the 
fault-tolerance of such systems. We intend to implement and evaluate our most promising 
suggested changes in publicly available service-discovery software. Third, we will expand our 
generic structural model of service-discovery architectures to include message exchanges and 
consistency conditions. We also intend to publish this model. 

Along a different dimension, we hope to improve the methodologies available to design and 
engineer distributed software systems. Part of our goal is to provide valuable recommendations 
to improve ADLs, and associated tools. We might even see the need and opportunity to develop 
our own ADL and analysis tools, especially designed for understanding collective behavior in 
multi-party distributed systems. At present, many publicly available specifications come with 
one or more reference implementations. We hope to demonstrate that architectural models help 
to better understand the properties of distributed systems. 
 
7. Conclusions 
Emerging service-discovery protocols provide the foundation for software components to 
discover each other, to organize themselves into a system, and to adapt to changes in system 
topology. While likely suitable for small-scale commercial applications, questions remain 
regarding the performance of such protocols at large scale, and during periods of high volatility 
and duress, as might exist in military and emergency-response applications.  In this paper, we 
used architectural models to characterize the performance of selected combinations of system 
topology and consistency-maintenance mechanism during catastrophic communication failure. 
Further, we used behavioral analysis to investigate causes underlying observed performance. Our 
initial investigations show significant differences in update effectiveness can be obtained by 
varying aspects of the design (architecture, topology, consistency-maintenance mechanism, and 
recovery strategies). Our results also suggest relationships among interface-failure rate, failure 
timing, and recovery strategies. We plan additional experiments to investigate trade-offs between 
effectiveness and efficiency when using various recovery strategies in both a two-party and 
three-party architecture. 
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